A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis.

نویسندگان

  • Bong-Hyun Ahn
  • Hyun-Seok Kim
  • Shiwei Song
  • In Hye Lee
  • Jie Liu
  • Athanassios Vassilopoulos
  • Chu-Xia Deng
  • Toren Finkel
چکیده

Here, we demonstrate a role for the mitochondrial NAD-dependent deacetylase Sirt3 in the maintenance of basal ATP levels and as a regulator of mitochondrial electron transport. We note that Sirt3(-/-) mouse embryonic fibroblasts have a reduction in basal ATP levels. Reconstitution with wild-type but not a deacetylase-deficient form of Sirt3 restored ATP levels in these cells. Furthermore in wild-type mice, the resting level of ATP correlates with organ-specific Sirt3 protein expression. Remarkably, in mice lacking Sirt3, basal levels of ATP in the heart, kidney, and liver were reduced >50%. We further demonstrate that mitochondrial protein acetylation is markedly elevated in Sirt3(-/-) tissues. In addition, in the absence of Sirt3, multiple components of Complex I of the electron transport chain demonstrate increased acetylation. Sirt3 can also physically interact with at least one of the known subunits of Complex I, the 39-kDa protein NDUFA9. Functional studies demonstrate that mitochondria from Sirt3(-/-) animals display a selective inhibition of Complex I activity. Furthermore, incubation of exogenous Sirt3 with mitochondria can augment Complex I activity. These results implicate protein acetylation as an important regulator of Complex I activity and demonstrate that Sirt3 functions in vivo to regulate and maintain basal ATP levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of SIRT3 leads to a compensatory shift in cellular metabolism promoting cancer cell growth

Background Mechanisms involved in regulating metabolic reprogramming in cancer cells are not fully understood. Acetylation is emerging as a major regulator of mitochondrial metabolism and may contribute to metabolic derangements that occur in cancer cells. Sirtuin-3, (SIRT3), is the main mitochondrial deacetylase and it serves to maintain mitochondrial energy homeostasis by deacetylating and ac...

متن کامل

Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p

The essential vitamin biotin is a covalent and tenaciously attached prosthetic group in several carboxylases that play important roles in the regulation of energy metabolism. Here we describe increased acetyl-CoA levels and mitochondrial hyperacetylation as downstream metabolic effects of biotin deficiency. Upregulated mitochondrial acetylation sites correlate with the cellular deficiency of th...

متن کامل

SIRT3 Is Crucial for Maintaining Skeletal Muscle Insulin Action and Protects Against Severe Insulin Resistance in High-Fat–Fed Mice

Protein hyperacetylation is associated with glucose intolerance and insulin resistance, suggesting that the enzymes regulating the acetylome play a role in this pathological process. Sirtuin 3 (SIRT3), the primary mitochondrial deacetylase, has been linked to energy homeostasis. Thus, it is hypothesized that the dysregulation of the mitochondrial acetylation state, via genetic deletion of SIRT3...

متن کامل

The role of SIRT3 in regulating cancer cell metabolism

Background Sirtuins are a family of NAD-dependent deacetylase, deacylase, and/or mono-ADP ribosyltransferase enzymes involved in regulation of many biological processes. Mammals contain seven sirtuins, three of which are localized to the mitochondria (SIRT3-5). SIRT3 has been shown to be the major mitochondrial deacetylase that regulates metabolic enzymes and promotes oxidative metabolism and e...

متن کامل

Sirt3 Protects Cortical Neurons against Oxidative Stress via Regulating Mitochondrial Ca2+ and Mitochondrial Biogenesis

Oxidative stress is a well-established event in the pathology of several neurobiological diseases. Sirt3 is a nicotinamide adenine nucleotide (NAD+)-dependent protein deacetylase that regulates mitochondrial function and metabolism in response to caloric restriction and stress. This study aims to investigate the role of Sirt3 in H2O2 induced oxidative neuronal injury in primary cultured rat cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 38  شماره 

صفحات  -

تاریخ انتشار 2008